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1. Introduction

This report describes the Phase I activities conducted for the Army Research Institute
(ARM at Cvbernet Systems Corporation during the period of January 24", 2000 to July

S24 , 2000 under the "Adaptive Instructionat System ," contract DA SW() -OO-M -408S.
These aictivities focused on four major areas:

1) Develop a Helicopter Flight Model for the Model-Based Reasoning Diagnostic
Engine (MBRDE),

2) Integrate the Model-Based Reasoning Diagnostic Engine into the OpenSkies
Virtuil Environment Training System,

3) Enhance the OpenSkies Virmal Environment Training System to o1Cus the
Student's Effbrt in Deficient Areas,

4) Demonstrate Adaptive Training by Creating a Scenario for Hoverj n a I iMhcopter
in OpenSkies,

This research demonstrated that an Army adaptive instructional system can
bc effeclive y developed and implemented.

1.1 Motivation

"This Phase I rescarch was important because it ficilitated the development of a mnodel&
based adaptive instruction system for teaIching helicopter pilots. An adaptive training
system that focuses on 1the deficncies of the student cý. I both increase th number of
students mceeting the minimum proficiency levels and save trining time. Cyberat plans
to continue our deveopment of this adaptive training methodology baisd on expert
system and modeblbased tcchniques. This will allow us to detcmft whe're a studelt's
deficiencies lie and adapt the t .ining Icrlity to focts o those problem reas k Unlike
other simulators that ar currently available, we will fe incorportting ach student s
learning style preference into thle simulation instruction, The proposed P1ase 11 effort is
focused on continud dcvlopmnent and enhancement of iihis syster.m Our Phase I work
demonstrated the feasibility of accomplishing this through the integration of our Modei
Based Reasoning Diagnostic Engine and our OpenSkies Virtual Environment to produce
a complete Adaptive Training System.

1.2 Project Goals

The intent of this effort wav to develop a tehnology demonsriation foIr in adaptive
training system, tousd on diag)nosis of student behaIvior In the Phasc I effort Cybernet
proposecd building a diagnostic engine for student iiult detectiWo and renmdi dion, In this
phise of thc effort three disthin components wlere 'I finld e he tfirt was in adaptation of
Cyhemet's Data Collection and Azý.iysis Envirnam ut ()CAE) win I ws uled yin
the pro iect to provide the dat tiamnework for thc limit checking u d exper systems
architectures. Expert systems require data stored in a tblackboard" system. The DCAi;



Final Repon'• 331t
Couract Nil. DASWO01-O0,MI-OS8

ybemet Sysems Corporation

provides this capability over a distributied ntwork of data collection. storage, and routing
proce~sses.

The second architecture was for data pro-processing. The baseline approach was to
browse data in the "blackboard" for limit trages. For each datum, a low and high range
was ch1ecked, The Boolean effect for each datum was "Out-of-Rango,-Low", "Out-of-
Range-!igh", or "In-range". Either "Out-of-Range4LowV' or "Out-of, Range-High"
represented a fault cue.

1.3 Project Methodology

The entire Phase I project consisted of four phases:

I) The project startup phase, which provided background information on adaptive
instructio"lal systms r yles,d and asd reasoing systes

2) The design: stage, which concentrated on creating model representations, a
learning procedure, and a system architecture.

3) The development stage, which concentrated on the compilation of a proof-of-
concept adaptive instructional system.

4) The planning stage, which used the infbrmation obtained from the Phase I
research to develop a plan for utilizing the tecnolog in the proposed system.

1.4 Project Outcomes

The Phase I project has successfully completed the project goals established above. We
have achieved these goals by concentrating ott the incremntal Phase I objectives. The
Phase I objectives and how they harve been accomplished are outlined below:

1) Develop Helicopter Flight Model for Model-Blased Reasoning Diagnostic Engine
(M13RDE). We have researched and developed a model describing the flight model
for hovering a helicoptero This model accesses te helicopter operating parameters as
an input to the diagnostic engine. Since the OpenSkies System aready contains a
well-developed model for the TH-57 helicopter, we used this flight miodel for this
development effort. This step also defines the possible errors encountered in hovering
the helicopter,

The helicopter model in OpenSkies consists of three hieh-level systems: the landing
gear, the engine, and the rotors. The landing gear simply represes the helicopter's
interaction with the ground, and is modeled using a basic spring/damper system. The
engine system is also strnightforward, and represents the Bell .Jetanger's three
throttle settings (oft, idle, and open), which in turn controls tihe rotor rotational
velocity, Fuel (and its weight) also is a part of the engine systm, as well as
accompanying fuel use that depends on the engine RPM and environmental hetors.
The most robust system is that which models the rotors. Both the main and tail rotors
are modeled complexly to allow for factors such as wind speed, ground effect, rotor
torque, available engine power, and helicopter velocity.
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The controls of the helicopter work as a real heicopter: the rudder affects the tail
rudder, the cyclic differentially pitches the blades of the main rotor, and the collective
modifies the pitch of all the blades of the min mrotor. The end effect is that the model
fti'r a helicopter in OpenSkies is complex enough to represent piloting reqtuirements
such as in-ground-effect to out-of-ground-effect transitions, canging rudder
requircments depending on collective, and forvard blade stalls. However, the model
also has the ability to have artificial controls applied to it to simplify operation. For
histauce, having the mode) automatically adjust the rudder, maintain a hover, or
increase collective with changing cyclic. This creates a helicopter model that runs
from completely autopilot controlled to completely pilot controlled,

2) Integrate Model-Based Reasoning Diagnostic Engine into the OpenSkies Virtual
Environment Training System. This task entailed converting the MLIRD into a
dynmnically linked library for inclusion into the OpenSkies system. This task has
been completed, We have already adapted dte OpenSkies system in order o parse the
data as input to the Model-Based Reasoning Diagnostic Engine. This system is based
on of OpenSkies High Level Architecture (HLA) Interface.

3) Enhance OpenSlies Virtual Environment Training System to Focus the
Student's Effort in Deficient Areas. This task defines some of the adaptive
capabilities of the. OpenSkies system. We have modified the scenario scriping
capability to handle branching to other parts of the scenario as well as adding
capability for answering questions and providing tutorials. Further, we ihave designed
new capabilities for more interactive capabilities in the simulation. Thisý; will allow us
to quickly redefine new input data from outside sources for creating new types of
scenarios.

4) Demonstrate Adaptive Training by Creating a Scenario for Hovering a
Helicopter in OpenSkies. We have developed a specific scenaio for hovering a
helicopter that includes branches to earlier parts of the scenario, question and answers
and a tutorial for hovering the helicopter.

5) Integrate System into OpenSkies Simulator. For this task, we iOegrated the
adaptive instructional system into the OpenSkies simulator. Demonstrating such
integraton illustrated how te adaptive instruction system can be used as a human

com1puter interface, and helps us design the Phase II system. We specilically
developed a basic system for training on a virtual helicopter.

6) Produce a Final Technical Report. This reportcompletes this task. The goa of this
task was to fidly document the results of the project. We will use this informtion t
arrive at a complete design and methodology for fthe Phae I systemh it will include
recommendations for hardware components, a mapping of appropriate agorithms o
this hardware, and an analysis of the proposed system's capabilities. it will also
contain a concept of operation, course level parts descriptions, and estimated level of
software/firmware development, integration, and maintenance.

3
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The following section provides details of specific aspects of the automatic learning
system. Meeting all of these objectives has resulted in a fundamental understanding of

the issues n�d solutions in performing recognition o{ dynamic and static gestures on
inexpensive personal computer platforms. We will use our understanding acquired during
this Phase I to address the integration of the adaptive instruction system into the wnilitary's
system.

L-5 Developed System

As detailed in Section 2, our system takes a teaching model created by the instructor and
a model designed around the student to create a final instructionl model. ThLe system is
used as follows:

1. The instructor determines what aspects of flight simulation he would like to teach and
develops an instructional model for the given scenario.

2. The student begins to fly the scenario while the simulator begins to create a model
about him and his actions.

3, T4he simulation generates remedial feedback for the student in order to improve his
peffonmanee.

4. The simulator updates the student model as the studen trains.

5. Steps 3 & 4 repeat until training is finished,

1.6 Commercialization

The proposed technology will be leveraged into y1c-ret's OpenSkies Massive
Multiplayer training and gaming simulation business. :yberuet has developed a
massively multi-player simulation technology tfr air, sea and land game and simulatien
phlý While- this technology was originally developed for low cost govermeut

simulation for training, the Company plans to adapt the technology to revolutioize the
consumer network gaming and flight simulator industy. The Company plans to distrilute
its OpenSkies simulation products at retail into the market, whch is currently defined by
Microsoft Flight Simulator, ProPilot, and Flight Unlimitd. To make a significant inroad
to this market, Cybemet plans to sell the product not as an end to itself, but as the entry
poit (o a new game playing experience.

Cybeernt plans to revolutionize the gaming industry by coupling the experience of
leading ilfitry commanders with the on-line flight gaming experience. The military,
commander will structure a training process which 'recruits' players, gives them flight
training modeled after current military doctrine, and then Leads graduates in a multi-player
interactive war g'ame. Because the technology is compatible with Government training

The complete business plan is avai lahle upon request.

4
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needs Cybernet plans to set! this product into the Government space fr irntegration ,nd
traini:1g pvrposes as well,

2. Phase I Work

In addition to the original Phase I Work Plan items, we have extended our work to gain a
better understanding of student learning styles. This work has allowed us to develop a
working Phase II concept that will be adaptive to many different types of students.

Learning styles are defined as the composite of characteristic cognitive affective, and
physiological factors that senre as relatively stable indicators of how a learner perceives.
interacts with, and responds to the learning enviroanent (Keefe, 1979). includd in this
definition are "cogilitive styles," which are intrinsic information-prcessng patterns that
represent a person's typical mode of perceiving, thinking, remembering and problem
solving (Messick, 1969). While there are over 250 conceptually distinct approaches to
instruction (Parloff, 1980) all vying for distinction as the most effective, we will analyze
the foremost models, and incorporate them into a model that addresses a military
audience.

We have also extended our research on adaptive modelbased reasoningT This research
will allow us to enhance our current Model-Based Reasoning Diagnostic Engine to create
a more adaptive system.

The MBRDE framework provides a generic approach to diagnosis of learner behavior, a
task that is often considered to be too complex to be costeffetive. The techniques
developed facilitate model-based reasoning about the learner's problem solving behavior
on the sole basis of a qualitative simulation nmodel. Hence, by only specifying the input
for the qualitative simulator, a hierarchical set of domain modes can be automaticalb'
generated.

The diagnostic process traces errors made in individual reasoning steps. This focus on
errors in the learner's problem solving behavior strongly influences the educational
approach of the system, People learn from their errors. This view on edu0atio is
different from the one underlying most diagnostic approaches. nstead of focusing on
tracing misconceptions in the learner's knowledge that can be remediated, we support the
learner's capability of self-repair.

2.1 Intleligent Systems

Fromn their inception, intelligent systems have been applied to the task of automated
diagnosis. Diagnostic expert systems were among the first successes of artificial
intelligence, and played a key role in the development of the field.

As the devices under diagnosis grew more complex, diagnostic system programmcrs
could no longer be assured their a priori knowledge of lhow the devices might fail would
be complete. It became apparent (hat expert systems' brittleness -in he case of
diagn osis. their inability to diagnose novel faults -- would limit the~ir usefiulness. hn order
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to diagnose these unpredicted (or "unknown") faults, a more generalized diagnostic
ppreach was needed. This need led tm the applicatiom of the AnodeU&ased reanoung

paradigm tote ak of automated device diagnosi.

The complexity of the diagnostic task has increased in ways beyond the number of
components and interconnections in devices under diagnosis. Intelligent systems are
called upon to provide diagnoses in applications where time is an increasingly critical
resource. ranging from nuclear plant control to student health and status monitoring, in
suh, reýal-time applications where operators must be notified of detected anomalies and
their probable cause(s) in a timely nmanner, model-based diagnostic systems are fated
with a tradeoff between diagnostic speed and detail. Simply put, the more accurate and
detailed the device model, the more time will be required to reach a diagnostic
conclusion.

Noting the similarity between this diagnostic tradeoff and that with which realtime
planning systems must contend, we have looked t anytime algorithms for inspiration.
This led to the development of a model-based diagnostic Lramework that allows a
diagnostic system to produce a diagnostic response at any time, with the response
becoming increasingly accurate as morn processing time is allocated to the diagnostic
task.

Cybernet's Model-Based Diagnostic Engine was originally developed under an Air Force
contract to detect and diagnose student behavioral anomalies. We intend to use this
model-based system to define a training model for helicopter flight that will allow us to
determine in real-time where the student is making errors and adapt the training system to
focus on these t:nrors. A simple model of the helicopter flight can be detined as tbliows.

Increase Collective

Pl=Up

Thstrument 5 Foot Hover __ _____

(Aheckcout ....... adjust Rudder

Agur1St Cyclic

Figure I, Simnple Model for 1Helicopter Flight

6
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If an insmu-tor were required to develop an expert y :te tha cheeks for each individul
case, the tomining system could possibly take weeks or even months to develop. Instead
we have the instructor develop a simple relational model of the flow of prowr flight of
the helicopter. The student Nllows the flow of model and at any time that the student has
incorectly operated diLe helicopter, the diagnostic engine will determine wher the error
wa; by train g back through the model. The diagn ostic engjne is informed of an. error in
the flight by the OpenSkies engine that is watchnng for missed events in the. scenario, The
dinanostic engine then polls the simulator and traces through the model to determne
where the student made an error. At this point, the training system will then be able to
present the different options to the student based on the type of error.

For example, OpenSkies recognizes that the student did not make the Rolling Hover. The
Model-Based Reasoning diagnostic Engine (MBIRIE) then traces hack through the
system and determines that the 5 ft. Hover was most likely not property executed. The
system then looks for faults in the Increase Collective, Adjust Rudder and Adjust Cyclic
tasks. Assuming no faults are found in Adjust Rudder and Adjutst Cyclic and a fault was
found in Increase Collective, the system assumes an error ither in Pulling Up or
Increasing the Throttle, The system checks for faults in each of these and finds that the
pilot produced too much throttle.

At this point the MBIRDE informs OpenSkies thit the probhem is in the Increase Throttle
section of the Increase Collective and the system can then presem the student with weveral
options. The system could let the student ask a simple question, ask for a tutorial or point
out to the student that the gauge is working improperly.

This research will allow Cybemnet to develop this adaptive training system and
incorporate it into our OpenSkies virtual reality environment for both demonstration of
the technolocy and fotr eventual commercialization of the product.

2.2 Model-]ased Systemrs Overview

For this proposal, we will talk about COponePt-olk•d •(crms. Such systems are
concerned primarily witth the structure of the artifct in question. An example of a
component-oricnted system is ENVISION [de Kieer & Brown, 1984]. ENVISION begins
with a description of the physical structure of a device: in terms of physically disjioint
eomponents and conduits conmecting those components, a set of behavior irues for each
compoment, and an input force applied to the device, The system then seeks to predict the
behavior of an entire device as a sequence of possible future states along with complete
causal analysis for the behavior.

2.3 Diagnostie Model-Based Systems

The basic paradigm of model-based reasoning for diagnosis can best be described as the
interaction of observatmi and prediction (Davis and Ha1schr, 1992]. Observations of
the system being monitored indicate what the device is actually doing. and predictions
based on an internal model of the system indicate what it is supposed to be doin.
Model-based reasoning is based on knowledge 1of te structure and behavior of the device
under observation. Model-based systems include a model of the device to be diagnosed,

7
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which is fithn used to Mieily the cause(s) of the dcevie's filure. The systems essentially
perfor internal simulations that generate predictions of how the de:vice should behave.
The systems also observe the device's actual behavior, and compare these obse-vations
with hýeir own predictions. (Davis & liamscher 1992J depicts the interaction betwei-(n
prediction and observation that characterizes model-based diagnosis.

( Actualt
06SEIAW 7 r P-REDICTION

DISCREPENCY

Figure 2: Observations and Predictions in Mode-Based Reasoning

Any differenices btwcen prediction and observation indicate possibl faults. As
described in PDhAs and Iamscher], the di(nnosis task is one of detemlining which of the
deviee's components could have failed in a way that accounts for Al of the discrepancies
observed. Because model-based systems draw their concýIsioks based on kiowledge of a
devic&s behavior ad its structure, they are often said to rueason from n"first principies-.
This view of model-based reasoning is developed in (Reier, 1987].

Three key points regarding model-based diagnostic systems are set lorth in the
introduetory chapter of IHam csher et al., 1992'1:

I. Knowlede about the internel strueure anud behavior qf a designed arti"act
can be used to diagnose that oart/hct,

2. Modeiebased diagnosis programs generate, test, and discriminate diagnoses.
3. M!odeling is' thez harad part, o/'mdeAbas•ed diagnosis,

The principles of model-based reasoning are well suited for performing device/system
diagtnoses. Model-based reasoning has become one of t.he most effective nca~ns of

performing automated diagnosis on systems or artifacts. There are three key issues in the
application of model-based approaches to the diagnosis of engineered artiwcts:

* The knowledge used to drive the diagnosis;
,, The diatrustic procedure;

*, Mo1deln the real-world artifact(s).
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2.4 Knowledge Used for Model-Based Diagaosis

"Traditional diigrosii methods, ranging from fault trees to expert Systems, have as their
foundatin an enumeration of possible faults, or, the way things might fil. del-based
diagnosis presents a signifieant departure from this line of thinking. The founedation of
nwle-based diagnosis is the principle that knowledge about the internal structure and
behavior of an artifat cM: be used to diagnose that system. This approach first appeared
in the INTER de Klcer, 19761 and SOPHIE [(Brown et al., 19821 programs, whih were
both designed to perform troubleshooting of electronics systems.

Steps in Performing Model-Based Diagnosis

Modet-based diagnosis can be broken dowa into three distinct steps, as described in
[Davis and Harscher, 1988]:

1L tIvpohesvs geweraion. Given a discrepancy betvew n the way an artlfact is
operatinga and the way it ought to be behaving, the first task is to determine which

components could have failed in such a way as to create the observed discrepancy.
Among tLh techniques used to generate a list of candidate compoannts are tracing
through an internal representation of the sýstmn structure beginning from the
location wNere the discrepancy is noticed and us i nfomation from nmultiple
discrepancies to cons•rain the generation of the hypothesis list.

2. l.ttpohexIs testing. Once the list of candidate hypotheses has been generated,
each candidate component nnmut be tested to see if can account for any or all of the
observed discrepancies, Among the techniques used to perform hypothesis testing
are faulttnodel simulations and constraint suspension.

3. Ih'pohesis discrFmination. Finally, the diagnostic system must make soIce
distinction between those hyypotheses that survive the test sta"eI This process
involves gathering additional ifobr-nation about the device. thrugh such
techniques as probing (making additional observations or testing (changing
inputs to the system and make observations in te new situation).

Diagnostic algorithms employed to perform the specific diagnostic reasoning in model-
based diagnostic systems ae based on standard AI techniques, and include-

,, Theorem proving;

* lHeuristic search;

* Qualitative simulation;

* t3ayesi an networks.

23 Model Accuracy

The most critical issue in model-based diagnosis is correctly modeling the artifact under
diagnosis. Inherent in the use of a model fOr diagnostic reasoning is the imlicit

9
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assumption that the model is correct, and therefibre that a l discrepancies between
prediction and observatio n h e traced back to fliults in the device. As stated in [Davis
and Hamscher, t9$88, "The assunption that the model is correct is in fat ncessarify

c,-ong in all cases. It is wrong in ways that are sometimes quite obvious and sometimes
quite subtle. Simply put, a model is a model precisely because it is [lot the device itself
and hence must in many ways be only an approximation. T'hlere will always be things
about• the device that the model does not captur."

A significant challenge in defining artifact models is deternining the correct level of
abstraction at which to model the artifact. The selection of the models" qevcl' involves a
trMdeoff between the accuracy of the model and itso coi eomplexily. Simply
put, the more detailed the models; the harder (and slower) they are to work wvifth.

General~purpose models are constructed using standar Al technologies such as:

* Predicate logic,

* Frames;
* C~onstrainits;

* Rules.

2.6 Model-Based System Design

Model-based systems typically use:

1. Obse5rvations of the device, typically observations at its inputs and outputs.

2. A description of the deviees internal structure, typically a listing of its
components and their interconnections.

3.. A description of the behavior of cach component.

These components then interact previously described to permit the system to detect
discrepancies and to then generate, test, and discriminate its hypotheses as to what might
be causing the discrepancies. There is no standard, or typica!, configuration for model
based systems. A wide variety of Al techniques are used to create model-based diagnosis
systems, including:

SKno~wledge Representation:

"- predicate logic

" production rules

"* slot-and-filler

" frames
* semlanltic nlets

* constraints

Inference Engine:

10
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Stheorem .proving

, lewunstic searcb

* qualitative simulation

, Bayesian networks

Discussions of these Al techniques can be found in [Bundy, 1990], [Pich & Knight,
1991j and [Shapiro, 1987],

2.7 Advantages of Model-Based Diagnostie Systems

"• Among the many advantages of thc modcl-based approach to implementing
diagznostic. systems are thel

", General reasoning shene eliminates need for specific expert knowledge

"* Device independent

"* Works from an intionration source (the design) typically available whei Mhe device is
first manufactured

* Can be less costly, :since the model is often supplied by the description used to design

and build the device

Avoids the data acquisition bottleneck associated with expert knowledge capture and
engineering

ExpNaory capablity is inherent in the paradigm

2.8 lDisadvantages of Model-BIased Diagnostic Sy5stenis

Perhaps the greatest disadvantage of the modeltbased approach is summed up in the third
main point taken from [ILtamscher et aL, 19921: modeling is the hard part of modell-ased
diagnosis. The premise model-based diagnosis is that if du e model itself is correct, thef
any discrepancies between tlle system's predictions and its observations arise from -and
can be traced back. to (l- efects in the device itself. Th~e authors in {Hamscher et al.],.

however, argue, "the assumption that the model is correct is in fict necessarily wong in
all cases." Simply because it is a model, and not the actual deviee it is an approximation.
There will always be ways in which the model is either incorrect (contains errors in what
does model) or incomplete (fails to model some. aspect of the device).

As a result, applications where the device in question involves interactions that are too
complicated or too subtle to be predicted with current modeling techniques may not be
appropriaw domains in which) to apply model-based reasoning whea implementing a
diagnostic system.

2.9 Examples of Modei-lhsed Diagnosis

This section describes several model-bascd diagnostic systems. Also included arc several
mior works in modeling, simulation. etc. These additioiMl works, while not complete



Final Rcon ot 331
Co traO• No, D)ASW01 I0•MA•1s

diagnostic systems, provide imuportant diagnostic tools or theoretical foundations upon

h.ich much of the cent ii Ofel4b5ed diagnosti research is built.

D DART

DART .Genesereth, 19841 was one of the systems to use deep finctional knowvledge in
the desh:i of expert systems. DART was a prototype for a dianostic system in the
domain of digital circuits. It uses fuietional models of comnponents instead of diagno
ruies to diagnose a problem.

Both the representation language and the interface utilized by DART were relatively
device-independent, Predicate calculus was used to encode design descipions of
devices under diagnosis, and resolution residue (a form of theorem proving) s used
generate both sets of suspect components and test to confirm or refte fult hypothesesO

DART's problem solving was formiulated using s veJ simI.plifying asunptlions:

L. Connections in the device are assumed to be working properly, so it seeks faulty
components to account for observed fault symptoms.

2. Faults are no,-itemittent components behave consistently for the duration of
the diagnosis.

3. There is only a single fault in the device,

6 GDE

GDE [de KMeer & Wlliamrs, t987 retains the assumptions #1 and #2 from DAR., but

attempts to relax assumption #3V The challenge in diagnosing multiple faults is hat tihe
hypothesis space grows exponentialy witbh the number of tauls, as dtie sysem mut now
consider sets of faults rather than individual faults. GDE addesses the complexity of this
problem with a combination of assumption-based trutLh maintenance and probabilistic
inference. Diagnoses are generated in ODE using a kind of constraint propagation.

* Diagnosis From First Principles

Compared to DART and GDE, Reiter's theory of diagnoss from first principles tRelier,
1987,J is a more general approach, It requires only a genora-pmruiose eorem prover to
fbrmul ate hypotheses.

Reiter addresses fhe overall diagnostic problem, which he states as:

Supposl) e one is given a description of a s, tem, together with an observation (f
the .syste's behavior wlhich vorqfliets with the way theS .ystem is m0ant to behave.
The diagnostic problem is to determine those conrnonents of the system which,
uiien assumed to be fimncdong abnor'maly will e~~la&i the dnirpaW between
the observed and correct sstem behavior.

Reite's itheory requires only that the system be described in some suitable lonic. The
theory irnolw:s working from a system description (SD) flnturing a fnite set of system
components, and a set of observations (OBS). Both SD and OBS are finite sets of

12
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senences in first-order predicate logic (which ifcludes both functions and id,:.niy).
tJacksonI 1990n

Reiter sites the following as being the contributions of the theory:

I, Tihe definition of the concept of diagnosis, including multiple fault diagnoses,
based upon the preservation of the consistency of the system description and its
observation.

2. The explicit use of the AB predicate for representing faults and possible
relationships between faults.

3. The ability of the theory to accommodate a wide variety of logic.

4, The algorithm DIAGNOSE for computing all diagnoses.

5. Characterizations of single fautt diagnoses and their computation.

6. Various results about the effects of system measurements on diagnoses.

7. The non-monotonic character of diagnosis, specifically its relationship to default

2.10 Cyhernet's Approach to a Model-Based System

In order to create the model, instructional and student iuqwd must be supplied. The model
will then contain the input information, in. addition to other infrmnation it computes from
the inwpt. We will first discuss the needed iniput and then proceed to discussion of how
this input is expanded into the actual ful-blown model.

The first step in ouýr Phase 1I process is to create ia of simple helicopter
tusks that can be easily combined to generate more complex tasks. We will coordinate
our model generation efforts with a registered helicopter instructor in order to ensure
accuracy. For exampe we would create a simple compvonent ccaied 'fly staigh'. Inside
the 'fly s component would be other components such as the collective, cyclic,
and rotor pedls. Values would be assigned to each component, md an adaptive decision
tree would be created within 'fly straight'.. Several other components such as :bank fetV,
;hover in place',c tc.., would be created to form a basic iiry tha y instructor can use
to form more complex actions. TIhis would turn the instruction model creation into a
quick nid easy dag tond drop scenario. n Figure 7, you can see aIn example of one such
component - in this case, thie collecti ve. Note that the feedback loop is shown in gray.

13
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Figu'e 3: An Adaptive Feedback Collective Component

After the instructional model is complete, we will generate the student model, Currently,
we plan onl Ilavinýg each student take a Productivity Environmnental Preference Survey
(PEPS) before training. The PEPS is a l00 item self-ieport questionnaire that identifies
individual adult preferences for coditions in a working and/or learing environment.
The PEPS wMIl give us a good idea what a tundent's preferred learning style is and aYlow
uss to generate an accurate student model. Thc student model will be composed of the
student's preference fo(r each of tile 1B diftarcnt learin stimuli such as motiv-aion,
persistence, perceptual, ete, These stimuli are covered im depth in the learning style
secton. Primarily, the squdent model Wilt affect how feedback and rinediaion, as well
as initial instruction, are administered to the student. For instance, a student who
demonstrates a visual preference will receive instruction and ftedback via visual
methods, whereas a student who shows an auditory preference will receive audio
instruction and feedback. While this may seem trivial from the point of looking at only
one pre,1Threnee, when all 15 smnui are referenced in thie student model the approach to
training wiiS vary greatly. Afer the student model is generated, it will then be
incorporated with the instruetional model to creale a tidl model that will be ,sed to
instruct the student (Note that while the instructional model will need to bU created by the
instruetor, the student model will be automatieally generated).

Once the full model is ready, it will be used by the NMBRDE',OpenSkies simulator to train
the student The model will provide the simulator with the optimum way of training th"e
student based on the student's learning style preferences. Fawors such as the student's
percevpal, motivation, and structur preferences are incorporated into how the
instructioml infbrmation is presented. More importatly, now that the instution:l
model has been combined with thje student model, the :feedback from the instructional
model wviltl be passed through the student model before being pesentd the studin. As
the student flies the training scenario laid ou by the model, he'll be given adaptive
instruction by the simulator based on his perirnance and the learing style aspect of the
model. However, this is lhe most complex aspect of the proposed Phase 1 solution.,

14
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Since the instructional model is created out of the basic flight building blocks, the
building blocks need to have the adaptive feedback trees built into them. As the student
progresses through eaCh part K the instructin :model, his perfrmýance will be gauged, If
his peribrumanee is not within acceptable limits, remedial feedback wIl be issued.

3, MlofelBasedl Reasoning Diagnostic Engine

While rnlexbased reasoning rnd set covering algorithms can provide quick and accurate
diagnoses of complex systems, they are limted to known failures and generally cannot
respond to unknown conditions. This limitation greatly reduces their capability, since the
number of factors involved in any complex task can quickly grow beyond the bounds of
an ex1pert system.

Model based reasoning systems use a technique that bases their dihgnoses on knowedge
of the actual system models and behaviors. This technique allows for the diagnoses of
problems that were unanticipated when the system was developed. Since as many jfalures
are unfbreseen, providing the monitoring agents with the capability to determine the
errors is critical to the operation of these complex tasks.

Liowever, modelbased systems typically do not provide anytime diagnoses, since
traversing an entire complex model will reqtuire rge amounts of compute time. What we
present here is a system for model-based reasoning that allows for the anytinm diagnosis
of errors.

3,1 Anytime Algorithims

Anyime algorithms were originally implemented to solve the problem of the limitation of
aowledge-based systems with time consuming algorithms ind variable performance.

Anytime algorithms show an increasing quality of results gradually as computation time
increases. This provides a tradeoff between resource consumption and output quality. The
quality of the.diagnosis is defined by the depth of the Wanyks or the certainty. NOach of
these methods of obtaining quality may be developed in several diffe:rent ways. !or
example, as an analytlime algoritlmn progresses, it may analyze the system in greater and
greater detail. It may drop deeper down into the system hierarchy as omptational ti&,
increases, providing diagnoses in varying steps. Another method to obain this fister
diagnosis is to use simpler behaviorl models for calcula!tig results at each component of
the total algorithm. The atgorihnm would then use wore complex behavioal models us
more compute time is provided.

Anytime algorithms are nornmally defined in two different nethods, interruptible and a
defined computational time. The interruptible method provides a more up to the second
diagnosis, howev'er it is much more difficult to imptent In this case we decided to
develop an anytime algorithm using the defined comnutational time with a hierarchical
interface. This allows us to provide Pbm an inte(rup1ible style for a tst, tess accrte
diagnosis and a more accurate diagnosis as compue time is made available,
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3.2 Anytime Diagnosis

Our diagnostic framework can be characterized by its use of (1) bottom-up modeling
resulting in the creation ofa hierarchical model of com~lex devices under diagnosis; and
(2) top-dcbo,,w traversal of tMe model resulting in the continuous refinement of diagnoses
geeraed.

Bott0om-Fp Hierarchical Modeling

Our approach to device modeling emphasizes absoraction of the device's components to
erat a hierarchical model of the device under diagnosis. This model pizrmits dianroses
to be produced at multiple levels of detail
Nlodeling Priiitivcs. Borrowing from graph theory, the basic primitives from which our
models are constructed are components and interconnections. In addition, we have added
a data primitive to denote observabe outputs generated by the device under diagnosis.
Initial Representation. Using these primitives, a device is first modeled at it lowest
level of abstraction, or its greaest amount of detail. After (he components and
interconnections are established, the data points are added which connect observable
outputs to their origins in the device.
Data Origins. The interconnections from which data values originte are noted and
entered into the device's database. These interconnections will be used to build, and aso
to prune, the diagnostic tree that is created as the device model is traversed. Once the
intercon-ections have been recorded, the data values are associated with the source
components of those interconnections.

Abstraction. Once the lowlevel representation has been established, repeated groupui.s
of components into successively larger super-components create models of teL device at
higher Reveol of abstraction.
Data Tracing. As groups of componenms are reptl ed by sngle components at higher
levels in the ierarchical model, data locations are passed up the hierarchy. The end
resut is tlhat for each data value, a list is cstabished of its source component at evey
level of the hierarchdical model.

Exainple Pt:. 1

This bottomoup modeling process is illustrated in the folowing example. Figure 4 shows
the initial representation of a device. At its level of greatest detail, this device consists of
twelve (12) components, eighmen (18) interconnections, ard fdve (5) data points,
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"Figure 5: Data Origins

Figure 4: Initial Reprewsentation

FiguJre 5 ists the data origins derived firom the initial representationsI

Figure 6 shows the initial data associations. These associations link the data values with
the components from which they ane output.

Figure 7 enumerates the data associations after the initial association step.

Fie~re 8 shows the first eroupin of the abstraction process. The components are
grouped to create three (3) super-components consisting of four (4) sub~componcnts each

TLM2: H... .:... . +
TLMI: L

TLM4- 4

Figure 6: Initial Data
Association Lists

Figumre 7: Initial Data-Component Assoeiations

As the abstraction process proceeds, a component hierarchy is constructed in a botton1up
manner. The lowest level of this hierarchy is sh, ownt in llFigure 9,

As this first grouping is made, the datacomponent associations are propagated up the
hierarchy, such that each data value is now associaed with its source component at this
newly created level of this hierarchy. The results of this propagation of associations are
depicted in Figure 10,
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t'igurc 9 emi rates the resulting data association lists as they are kept in the device's
description database.

TLlM2: I N

1Mi: L 0

Figure 8: Updated DataAssociation Lists ,,iii::.......,... ......

F•igure 9: Secont Data-i •" • ]i',r'':.•Cornponent Ass~oeia~tins

.... , -• ] J : ._ p t " " ... .. n. r ... .. .. . . .. ... ..l ....... .. ...... ... (" m on' L .......... •

Ii:•
Figure 10: Fitrst Component

Grouping N 0

As C 0 E F 0oH i J K L

Figure i: Initidal Component
Iieira rchy

The first iteraon ii the botom-up abstraction modeling sequence is now complete.
This process ceases when a single-component level has been created as the top level in
the device model, as shown in Figure 2.

"L,,T00 •' G, N, PTLM2V L, 0, P

T1.M4: J, 0, P

TILMSi: 6, M, P ]
Figure 12: Final Data
Association Lists

Fi gure i3: Fiinl .Reprcsesum•ion
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Figure 12 gives the final data association lists, corresponding to the final topievel
•representatdon, Uael. data valdue is now associated with its source component at each level

in the model hierarchy.

Finally. Figure 14 depicts the final component hierarchy resulting from the hotmniup
modeling process.

M N O

r I rI 1-
A 8 0 0 E F G H I .i K L

Figure 14: Fina! Component Hierarchy

Top-Down Diagnostic Refinement

The second haff of owr anytime diahgtostic framework consists of an algoritzin Por
traversing the model with the goal of deriving a tree of components making up a list of
potn!ial diagnoses for any given data anomaly. T'his model t,;versa alorithm provides
an immediate high-level list of possile components in which an error codl ld td the
dat anomaly in question, and also allows that list of components to be refined
continualfly as time permits. Key elenrens offlthis process follow.

Propagation. The first step in deriving a tree of components that each represen
poteptial diagnoses is to propagate a fault ma)rker from the anomalous• data value back

through the mc del This propagation is repeated on a sub-component basis as the
component tree is expanded.

Replacement. Components in the diagnostic tree are replaced with their set of sub-
cormponents.

Expanlsion, Sets of sub-components are expanded to brmin a more detailed dngnosic
tr•ee. The fatlt markers are propagated through the set of subM-components to determine
their proper order in the diagnostic tree, which nay tvsrl in A ie inseArtion ofn a breach iWO

kisconnection. As a set of sub-components is expanded, an existing branch in the
dianostic tree nmay no longer remain connected. As the more detailed propagation takes
place, ihuft nmrkers will not necessarily be passed to all pahs of a branch. Those
branches to which a marker is not passed will become disconnected fiom thje diagnosti
tree, and wil therefore 1e removed from firther consideration,

Prnning. The diagnostic tree is pruned using nominal data observations. As .ftdc
markers are passed from component to component ;long tlheir interconmeetions, the
propagation ceases when an interconnection has been noted in the device database as the
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origin of a data value and that value has been observed to be winiin its nominal operating
rangee

Example, P1. 2
This top-downi process of building a tree of potential diagnoses is illustrated in the
fi•lowing example, which uses the device previously modeled,

Given th1e observation of an anomaly at data value ITN43 with all others OKM the initial
propagation through the highest level of the hierarchy is shown in steps (a), (b), and (c).
Note that "- K is used to den.ote a path termination,

(a)

(b) M P

(&j T1M3 -0- P

In step (d) component P is replaced with its sub-component group (ONQM).

(d) TLM3 ---. ARM) -0- -

In step (e) th ult ma.rker iýs proagated throueh group (ONM). The group is
expanded and a brandc is added to the diagnostic tree.

TLMt -,--p- 0

(c)

II step () Co0hponent 0 is replaced with i ts sib -component group (I,J,KL).

JULM3 •-: IU.Jot) K

In step (g) the AiSli marker is propgated through group (I,JK,L). TIhve group is expanded,
and Mhe diagnostic path con"ects to component N hut M!p. to component M.

TUA-3 -10 L *, K\0a A N -4

In step (h) component M4 and anything that foiloW s it in the. diagnostic path ar
disconnected, as the• could not be the cause of a data anomaly at TLM43,

(1) R 3 -*" L -1, K ......, N b-
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in step (i) component N is replaced with its sub-component group (KF,(dl).

(i) Tuhc, 1 ~-1*. K - tAGI

In step (j) the fault marker is propagated through group (E,',ie1). Thgrooup is
expanded, and a branch is added to The diagnostic tree.

ITWO -0 L -* )

Fina~ly, the path froni component F to component is s prunmed moma the diagnostic tree.
Recall from our previous model-construction example that data value TLMH originates
on the interconnection G-F and has component G as iRslowest-level source $,cC
TLMI has been observced to be within its nomial opratin range ard no other
anomalous data observations have component 0 as their origin, fault marker propagation
will not pass from F to 0. The final diagnostic tree, consisting of com'onents that are
potential diagnoses for the observed anmaily at TLM3, is shown as step (k).

3.3 Hierarchical Analysis

The internal model representation builds a tree thatJ is used to represent the student at
different levels of abstraction. the root node represents the student as a uni, while the
successive le~vels are increasingly more detailed views of the student. For example, if" the

tree consists of the root R with two chIdre.n A a"d Vi, thwen at abstraction level 1 the
student is simply R, while at absraction level 2., the student is the set of components
consistng of A and B.

At each abstraction level there is a graph that represens the logical dependenies of the
components at that level. The prograim starts at the top level and proceeds until ihe
bottom level is reached or time has run out (other alternatives are possible, such as
s:arting at a certain level of abstraction, or skipping some levels, though the concept
remains essentially the same). At each level, the proixam consmructs a Po)ssible C(nise
LWsf for each of the bad dat points by traversing the graph at that level. The Possible
Cause List fýr a bad dat point is a list of components such tMha if tny one of them is
defective, it could lead to the bad data undeer consideration. Possible Eff1cct Lss are also
constnrcted. For a given component, its Possible Eff1et List is the list of bad data that it
could be effecting. Then the program develops a number of hypotheses tht account for
all the bad data., and assigns probabilities to the hypotheses. A hypothesis is in fat jost
an appropriately chosen set of components. Note that Possible Cause liscs refer to one
particular data point, while a hypothesis takes all the bad data po•nts into consideration.
Detais concerning what makes a set of components a hypothesis will be discussed later.
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Note that tdis algorithm proceeds in an "anyime" fashion. The computations are one at
each level, thus providing a complete, though possily vague, diagnosis at each level; in
addition, the comnputations at: successively deeper levels provide in•creasingly more

detailed diagnoses. The program essentially has two parts. In the first part an appropriate
model is constructed from the given infInwiation. The second part uses this model to
draw conclusions. The first part• is done prior to any serious cocerm over time efliciency,
wlke the second part is expected to be run in real time.

3.4 tntetnaa Moded Construction

In order to create the model (the first part of the algorithm), the algorithm needs to be
given particular information, ftle input. The model w\ill then contain the input
information, in addition to other informaton it computes from the input, We wvill first
discuss the needed input and then proceed to a discussion of how this input is expanded
into the actual ftll-blown model.

3.5 The nput

The input ( ad the model for that matter ), can be broken into two aspects, a single
hierarchical tree and a set of dq)endency graphs. These two aspects arC eoneept/l.aljv
independent, but phbysically dependeit. By this we mean that graphs and the tree can be
de inve i and conceptnalized withouM the other, but that the actual pieces they contain a
shared; in particular, some nodes can be shared, constituting what is a physicalike ( of
course it's not really physical!) dpendeny. Hnowever it is probably simplest to
understad the tree as existinqg first, with vte grphs buih aroud the tree; so in this sense
the tree is independent of the graphs. but the graphs depend on the tree. The word "node"

and "vertex" will be used to refe to the same entiy, though the former when speaking of
a tree and the latter when speawking ofa graph

3.6 The Tree

We now fhrthcr develop the idea of how the t=ee is usedw As mentioned in sectwion 42,
the tree is used to rmesent the student at different levels of abstraction. If nqode P has
exactly the children A. B, and C. this inicates that P is a component that is made oq f
the three components A, B, aN C. 71 sq, P As made up a4A, B, and C ?,ans d~ar "
con•tais hse S nodes and P tonw ains nwothig more bhtm thAsn 3 nodes; thOm P is no
more than another name for the set containing A, 13, and C.

Note that the tree does not necessarily represent something physical. The tree povides a
hierarchical categorization of the physical student. Cosider an example tree T in which
the node P has children A, 13, and C, tt could be th~e case that the components represented

by A, B, and C air physically contained in a box and so P could be seen as corresponding
to something physical, namely, the box and its contents. However, it could be the ease
that A, 11 and C are simply 3 different comporents witM no aýpparent physical relationship°
Yet there could be a reason to categorize these 3 components into a single super-
component P. En this case, though AB., and C could be physical, P is not; rather, P is a
category hiat incltdes 3 physical objects A, B, and C. In generAl, we wodd expect the
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leaf nodes to be physical objects and thie nonoleaf nodes to be abstractions or
;a)goýIzations.

Each component of the student has a probability of being defective, Actually only tile
probablities for thoe eaf nodes are needed and from these probabilities the probabilities of
the non-eaf nodes can be computed.

3.7 The Set of Graphs

The tree introduces a number of nodes, indicating how these nodes relate to one another
as far as contaimnent. The set of graphs then expands upon this to indicate how the
components depend upon each otlherin terms of sone other charateristic. These nodes
are the point of physical dependence between the tree and the set of graphs, We discuss
nodes in more detail later.

We surnme thWt we ar- given a representation of a student thOt indiates the components
and the dependencies between the componentsr This representtion would typically be a
schematic diagram of the student circuitry with additionl dependences, such as
temperature, indicated. This representation should somehow (automatically by computer
program or by user) be converted into a set of directed graphs S, in which tie vertices of a
graph represent thte components of the student ( already defined by the tree ) and the
edges of a graph represent the logical dependencies between the components.

First we give an informal explanation of this concept. The set of graphs S could for
example contain two graphs VT and TP that represent the dependencies voltage and
temperature, respectively. We will call voltage and temperature pendenyv types. An
edge in tie grt ph VT with somrce node s and taxget node t indicates thWt conponent s
depends on component t, in terms of voltage.. W'c will have a separate graph for each
dependency type: the vertices will be the sane for these graphs since we are still
considering the same components, though the edges, which represenot relafloShips, can
be quite different.

Formally, the program will be given a set of dependency types ( or we could call these
graph names ) Di..., D, It will also be given a set of graphs A' - (V',E') ... , A
(Vr,EP) that indicate the component dependencies for each of the dependency types. If
component A depend on component L! in terms Qj depenmency Otpe 1,), ten the graph T•
should have an edgefom vertex/A to vertex B. lt order tio A to depend on B, 1 needs to
be giving some kind of output to A. so in terms of the direction qf data flow ( the
meaning ofdata is being taken loo!sely) there is an edge in the opposite direction, f0om 2B
toA.

Some edges arc called data edges because they have data points on them. More
specifically, tbr each dependency type Di, a number of edges will be specified as data
edges of the type IX. These edges contain data of type FD and appear in graph At, Kf a,
data point T is on a dat edge ( A, B ) this indicates that the data is output by 13 an then
taken into A, thus the reason that A depends on B1

Any graph is allowed thati meet the fbllowing two criteria:
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1- Only data eds can have the same source and target ( ie. be loops),

2- No two nodes in a graph can be on the same path to the root ( or be dir'ectly
related). Two nodes are directly related if repeatedy applying the parent function
to one of the nodes, eventually yields the other.

We now come to the discussion of different kinds of nodes. There are two kinds of
nods, onponent nodes and virtual nodes, tie tfrmer being the type that is shared
between the grapls and the tree. The componenIt nodes represent funciionai objects in the
student, while virtual nodes repr!esent non-fuwctional obects. However, virtual nodes
actually have a pupo.ose, albeit a smnll on, Vitual nodes are used to represent the
intersection points of the dependencies, such as is common on a circuitry schematic, in
which black dots represent intersecting wires, It could be possible to do with out virtual
nodes, however this would require converting diagrams with virul nodes into a model
without any, there are odd scenarios in which this conversion becomes confusing.

So in summary, the program expects the lholowing as input:

I- A tree T made up of component nodes C.

2- A set of virtual nodes VT.

3- A set of directed graphs S { A , ... ) }named D -.., D,. respectively,
in which the nodes of any A' are contained in (C 0 V7).

4- For each A (V, [) a set ofdata edges T g, E

5- The function probability: C -4 {numnbrs from 0 to I [}, indicating
probabilities of bing dfective ( need only be defi d for leaves of T).

3.8 The Expansion of the Input to Create the Model

Fromn the set of graphs and the tree, a collection of highfrlevel grahs is formed that are
consistent with the given graphs, but contain less detail. The program determines how
many levels ate in the tree T; call this number in. The mi levels of T are rwnbered 1
through m fronti top to bottom. More spccificaly, the root is at level 1, aind another node
n is at level 2 + [ number onodes between it and the root ]. Each graph then also has a
level associated with it, namely the level of the node with the largest. Leve, that it
contains. In many cases it is expected that each of the graphs witl conain all the leaf
nodes, so that the graph is a complete description of the dependency relation.ship at the
lowest level ( or physical level ). The higher level graphs would then be less detailed
abstractions of the low level physical description.

For a graph A at level t, the program wiil construct graphs A1,...,A Nxl) wh., ere graph A•,
is the graph corresponding to level k of tree T. Graph A, is set equal to A and then the
program constructs A&k.p, fiom Ak, for k t,...2 placing the edges so thatt the graph 'A'
is consistent with the graph A-. We will give the Grpqh Construction Algorithm that will
make use of the foilIowing function:
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Given a node n and a natural number k define

U(n1k) parent), ifnta is at level k

n, otherwise

3.9 Gra~ph Construction Algoritlm

The construction ofgrph A(q =A(VY-), = 44) from Ak (V, E£ý)

Q Vk with all the vertices at level k in the tree T replaced by their parents
Initialize EJ2ty= {}

2 - For each edge (uv) itn Ek do:

a -u' U(uk)

V, U(v=k)

b- if u'= N' V(ie. the edge is a loop) AND

(u,v) is a dam edge

then

t,,, = E(k-1) U (u'% v'), and (u',v') has all the properties of(uv)

if u' ;a V, then

E 2 Q E (u', vQ), and (u',v') has all the properties of (u,v)

We see how the griph A(,., is consistent with thw graph A , in that any edge (u,v) in A•,-.)
is represented in Ak, as an edge (wz), where w could be a child of u and z could be a child
of v. Notice that the above Graph Construction Algorithm will only create loops (edges
having the same nodes for its source and target) if the edge is a data edge. A cmeial poit
is that the higher rovel graphs that are constructed have edges withe same properties as
the ones they are derived fSom. This includes their name and the fact that they have the
same data point on them. This also includes any changes made to one of the edges; what
is really going on is that there is one edge existing on different levels,

Probabilities of being defective should he. passed up the tree from the given probabilities
at dte leaves, as done in the following algorithm:

3.10 Probability Percolation Algorithm

Starting at the leaves and moving up to root, pass up probabilities as lhllows:

Given a node N with r children es,..,c having respective probabilities of being
defective Pbv.,qP then

probability that N is defectve probability that at least one of q is detective

I - probability that none of c are defective
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3.11 tDrawing Conciusions in Real Time

The process of constructing the graphs and other work to this point is done before serious
concern over time efficiency,\ When the data points are declared to be either good or bad,
the real time process begins, In the following discussion we will use the following
notation:

,the graph with dependency type )j at level k

The discussion of the algorithmj is difficult to describe sequentially because it can
respond to different real-time user instructions. tnstead of describing a'n algorithu, the
basic capabilities will be discussed.

Given a level in the tree, the program ean do three basic computations. The program can
compulte the Possible Cause Lists ( P.C. lists ), the Possible Effect Lists (.E. lists ), and
the Minimal Covers ( M.C.'s ). A typical approach would be to start at level 1, compute
the Possible Cause and Effect Lists for this level, then, go on to level 2 and do the same,
and so on. Then when the bottom level of the tree is reached or after a certain amiount of
time has elapsed the program will stop mooving down the tree and the Minimal Covers
will be computed at the lowest level reached. The Minimal Covers could be computed at
each level, but since theiy can take a fair amount of time, they are only computed at the
lowest level reached.

This scheme is only one of many po.ssible approaches. The Minimal Covers coiuld be
computed at each level or the program could skip some levels, for example. Given that
there is such variability, we will discuss what these 3 computations are and how they are
arrived at and go no Curther for now.

3.12 Possible Cause Lists

A Possible cause List can be computed for a bad data point at a particular level L in the
tree. Recall that some edges are data edges and contain data, which can be bad or good (
or unknown ). The Possible Cause List for a particular bad data will be a set of
component nodes; the list gets its name because if any of th1ese component nodes are
malfunctioning it could be causing the bad data under ctonsideraion. To understand
precisely what they are we give an overview of the algorithm used to compute them.

Given a bad data point T, we want to find the PC. list of T at level L.

I- Let E be the data edge that T is located on at level L. Recall that data points are
located on data edges and the same edge exists at multiple levels, all with the
same data point,

2- Let G be the graph that E is in at the given level.

3- Let P.C. be the set of all nodes in G that arc reahable from E by following the
edges in the standard direction from source to target, subject to one restrictio-n:

If an edge contains a good data point, then the edge is not traversed.
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Tihe rtional behind this alorithm is to put a componet node on the P.C. list of a bad
data point. if the dat poinlt depemds on that conponent node, thus the reason why the
above algorithm calls for traversing the graph i4 the direction oftdependence, -from sorce
to target. Now consider the reason or not traversing an edge cWontalning a good data
poit, Assume the graph is being traversed and the node A has been included in the P.C.
list ail the edge ( A, B ), which contains a good data point, is in G. Since A could be
causing thle bad data ( we know this because it is on ftie P.C. list ) and A depends on B, it
could be the case that B is defmctive and thus causing the bad duta. However, the good
data is output by B to A whiih indicates that though B could have problems in other
areas, it is giving good output to A.

3.13 Possible Effect Lists

A P.R. list can be conmputed for a node at a particular leve L n the tree. This is the list of
data poInts, possibly of diffrent dependency types, tlat 1he node coild be causing to be
bad; so these data points are the ones that the node effccts, Such a list could be
constructed in a way very similar to constructing P.C. lists. In this case, the algorithm
starte at the node in question and traverse the edges in dai oppoliWe dire/ion, goin hfro,
target to souree. Again, edges with good data points would not be traversed. Besides
traversing in the opposite direction, inother diltTrenee is the fact that a P.EI. list ca,
encompass a number of dependency types. For this reason, 1n he mentioned traversal,
what is actually meant is a separate traversal f'or :the graph of each dependency tlype at the
given level. However, this computation can be accomplished without a trversal, by
simply looking at the P.C. lists for all the dependency types, and computhig the PE. lists
for all the nodes in the P.C, lists ( nodes not in the P.C. lists will have empty P.E. lists).

- Initialize the P.*E. list of all the nodes at to be empty.

2. For each P.C. list P for data T, at level L. do the following:

, For each node N in P, put T on the PJ.E list of N.

"3.14 Minimal Covers

We now discuss what a minimal coer is by b'gining with a moitvation fr its
definition. Given the student at some level of abstraction Wth its bad dat we want to

find hypotheses that explain aill dhe bad data. A hypothesis is simply a set of components
such that all of them being defective provides an adequate explanation of ýthe kad dau.

lowever we also don't want to provide too much information in our hypotesis, thus
each component in our hypothesis is important to the explanation of the bad data. We
capture this idea ofhhypothesis formalfy in the following detnution of a minimal cover.

Given a directed graph G = (V, F) and a set of bad data edges B G E, we say that a set of
vertices C c V corer 1 if lOr every,, edge in 13 there is a path 1rom some vertex in C to
this edge, moving in the opposite direction qfth edges from target to soure. We go in

the opposite direction of the edges since given a vertex v, moving in tre direction of the
edges finds components and edges oil which v depends', while moving in the opposite
direction finds edges and components that depend upon v. A cover is thus an adequate
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e:×plnation for the bad data. Given a cover C, we say qhat it is a minimal cover if
removing any vertex Aiom C causes C to cease bwing a cover. So a minima! cover is an
adequate explanation of the bad data that doesn't contain too muck information,

TVe computation of the minimal covers takes exponential lime in the worse case, so a
backtrcking approach is used to reduce the time expensE, The mninimal covers are
actually computed from the P.C. and PdE. lists, though they could he computed directly
from the graphs.

3.15 Overview of Algoriflm to Find Minimal Covcls

Thae following describes how the mininml cover finding algoritlun works, It complements
descriptions that aire included in Mhe software modules themselves, To make referral to
the software ea.sier, references are made to the class hierarchy2 in the softwar as
indicated in the footnolte7

The sets of the algorithim sequentially are:

I- Let C be the empty sequence (this represents the current solution)

Let S be the empty set of solutions (will contain all the miniHal

covers at the end of the agIorith.1)

Let N be a sequence of nodes obtained from all of the possible cause

lists (these arc the nodes which can be in a minimal cove, this is a

static entity).

2- If there is a next node from N to add to the current C, then add it,

otberw ise, remove the last element added and add ncxt node ( IF
POSSIBLIT),

2 Speifiay, refer to the description of Searohflree class and especially thg e•ithod
GetNextSolationByl~acksrackh . Also refer to the MinimalCover class and especially the methods
AddElement and RemoveLastloement. The precise description of Mhe algArithm is in essence: cotained in
tese places. Miwre wro clhatiurs dwse eiasss iloat complement ihi•, oveytvk; d aeunwni li Also,
dte rqjZ'rcnces in SearchTree are valuable, and the ideas are sbn darm

3 Classes ivolved with Minimal Cover Computation include the following, with class hierarchy indicated:
- Searchtlree

2- UnorderedSohutionSearchTrce: SearchTree
3- M inimalCoverScnrch'I'rec: UtrorderedSearch•Tree

4- SoluwionComineo r
5-Cover: SolutonContainer
6- MinimalC, over: Cover
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3- If this last removeladd is not possible then we are done and S ctains

our" minimal Covers.4

4- If C is a minimal cover then add C to S

If C is ".Bad" (see below) or C is minimal cover tlhe backtrack,

meaning that we remove the last element added to C5, and thus cut off the

possibility of any fnture extensions in this direction.

Otherwise, we have a C that is not yet a minimal cover, but which

could conceivably be extended to one.

5- Goto (2)

Farther Comments on above:

C is "Bad" if it is not a minimal cover, and furthermore could not possibly be extended to
a minimal cover by adding nodes. As soon as we know C is Bad, we stop extending in
that direction, Badness is tested for by the algorithm in MinimalCover::isMinimal (Note
that flis returns false if "Bad" and true not "Bad"). What happens is that each node is
examined and each should uniquely cover some data, otherwise it could be removed with
no effect, and so the cover could not possibly be minimal.

Illustrative Example of the Algorithm:

To illustrate the algorithm conceptually, we use the following example graph:

Let 0 be: the following graph (shown to
Ti the left):• Q"•• .1 .Vertices a,b,c~de

Edgcs(going from source to targe0)• • )_• .+,•,(d~b),(b,e),(d,e),(ece)(a,e)

Data TI on (bhp), TP2 on (c,c)

We have possible causes ( ,C.) lists

Figure 1S:Example Graph (for P ofTI = [bJ]
Illustrating the Minimal Cover P.C. ofT2 f a, e, d 3

Computational Algorithmu)

" via MinimnalCovcr::Addliternem and NtinirnaICovr: :Rernovr LIement

5 via M inimalCover::RemoveLastE1ementAdded
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The minimal covers we should find are:

{d , {a, b}, {b, e}

TI' holo .wing is an illustrative rn of the.algorithim, with comments:

I- C ,empty sequence, S={}, N= { a, b, c,d }

Put C in the root of a treev

2- C = < a >. Put this as the lef most child of C (or < a >), the root,

3- C only covers 1*2 so it is not a cover. But it is not Bad either, so goto (2)

2- C = < a, b >. Put b as child of <a >

3. C is a minimal cover so make S { < b> .

Remove last element added, namely b. So we go up tree to node < a>.

2- Addc, so C <,e>

3- C is Bad since both a and c ONLY cover T2, and so neither one has data that it
uniquely covers. Aetually we only needed one s'40h bad node. No mter what is
added to < a, c > it could not possibly be miiimmal because either or= c could
always be rem'novcd.

So we remove last clement added to get C <a>; go back up tree.

2- Add d, so C =' <t ,d>, righumos~t child of < a > in IIhe serch tree.

3- C is bad. In this case d is actually a minimal ON its OWN.

Remove d to get C <a>. Nothing is left to ad to C so re o•ntov liast Ie emet
added, a, to get C = < >; and we are back at the root of tree.

Th followving is a summary of what will happen from his point in tile process forward
depicted by the variabfe -hnges (at ever step):

C .. < b >,

C'' < b c > - is a minimal cover
S• < b >, <b >}

C <b>

C < b, d > - is Bad

6 This set does not inckide "e".

Such a tnee is implicit in the rnmniqg of th• a0gorit tin, anm is e 111entiay a search tre, wiib possibRe
so~fohsa•v its •todes
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C by C

C = < c>
C •,=<c, d > - is Bad

C=<c>

C

C < d > - is a minimal cover

S < a{ b>, < b, e>,<d> }
C •<

T1here is notbhing else to add, so the alorithm is done

Limdtations of the Current Algorithm:

A possible probleh in fle algorithm tliht occurred to us after testing and debuggh•, is
that if a model has a cycle in its graph so that a node coukd tualy d"pend on itself
problem in resolution might occur. Perhaps l ter we shotjld chcki with ex p11 s, and
if this is a real problem we can patch it tp either by disalsowin uch node to Ie.
constructed, or allowing them and altering the lgorithms slightly. Th1 first app o.t:h
may b easier and actually makes more sense. This makes for a tter system y being
appropriately infnxi e, unless there could be a us.e in the fiiture for such cnscions.

4. Learning Styles

One of the main factors that must be taken into account when teachisg stdents s their
preferred learmng style. Everyone has a distinct learning sly1e. Snome styies are more
similar than others, but. students have their own s of conditions that if m.prt,1ovide them
with ther dcd environmnent, ttowever, most computer simulators of'ecn have
the tendency to teach using only one stle. Whfile this nay be perfect for those stulents
who learn best through tlht stye tyiose tha don't will etperience diffic uties learning 'ad
have a much hirder tne graspin the requred concepts. Kiernan (1979) staed

We now see t part of the poblem was the tendency to apply a single
(iAstructional) apprcach to all students... Student learning st1 a Ic 'I W s
this premnise ajn rgi s fbr an ccl, tcUQ instructiownal program, o'-e base
upon a variety of tLchniqu.s awl structures, reflectin the different ways
that individul students acquire knowledge and skdls (p.D

This is nonsense becamwe not rel system wou0l have a fhaull which depends or itsef, bKt it is theoretilvaly
p•ossitbe to code suih) mawodel up.
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Simulator software that provides a varied approach to teaming, and that matches
instructional methods with each student's style preerence, can result improved
attitudes toward learning and an incrcae in productivity aid achievement.

4.1 Diagnosing a Stident's Learning Style

The most comprehensive way of determining an adult student's learning style is through
the Productivity EnVironmental Preference Survey (PEPS). The PEPS iS a 100 item seI!&
report questionnaire that identifies indidual adult preferences :fr conditions in a
working and/or learning environment. The PEPS contains: (I) measurement of 20
elements on a five-point Likert scale, (2) development by content and factor analysis, and
(3) reliability data equal to or greater than .60 for 68% of the 20 elements. By
administering a PEPS beforehmad, the simulator can create a model of the student's
learning style and then choose an appropriate initial instruction trategy. Thel student,
instructor, or simulator oan then modif this Strntegy as training progresses. In the
flowin,'g sections, each of the different learning style stimuli that can be addressed by
simulation software wit! be discussed, along with a method of implemenation,

4.2 Physical Stimuli

Physical stimuli are aspects of the student's physical state that provides the student with
his optimal learning enviromnent. The four main categories of physical stimuli are
perceptual, intake, time, and mobility. 01ly one of these factors, perceptual, cam be
taken into account in the simulator software. The instructor should regulate flctors such
as intake (whether a student likes to eat while ie learns) or tirme (what tien of day that
student likes to learn) instead of the simulator. Iowever, simulation software can address
the student's perceptual preference, which will be described below.

4.3 Perceptual

Perceptual stimuli are the ways in which we acquire knowledge. The three classes of
perceptual stimuli are factual-kinesthetic, aditory, and visual, A number of studies
verify that students' learning is enhanced when they ar taught through their pemonJa
perceptual preferences (Urbsehat, 1977; Carbo, 1980; Weinberg, 1983; Wheeler, 1983;
Jaronsbeck, 1984; Kroon, 1985; Martini, 1986).

Tactual-kinesthetic (TK) learners are studenta who prefer to take a "hands on" approach.
They learn through doing. The best way for them to learn any task is through firsthand
experience. An adaptive helicopter simulator that allows a TK studet to immediately
start the simulation, and then provide auditory or visual prompting as he flies, will
provide this student with a better learning environment, For example, an introductory TK
lesson could start with the helicopter at 1,000 feet. Pre-recorded audio instructions
explaining to the student toat he or she must maintain a stea heading through the use of
the cyclic and tail rotor pedals would be broadcast over the headphones. As the student
tries to maintain a steady heading, the simulator would prompt the student to apply more
pressure to the right or left rotor pedal, pull back on the cylic, or make any ajustment to
the controls that were .necessa. If the student is not able to maitain the course, the
simulator would re-cetear the helicopter and have the sudent tr again.
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Visual learners learn best by reading informaimon, or viewing a slide/movie presentation.
Any form of media by which tle student cnan see the mateiri to be Iearned will be
effective, A visual sludent would gain the most out of reading an instruction man ua or
textbook before he begins trainng. An adaptive helicopter simulator that begins by
presenting the student with written material or visual presentations and then allows a
student to reference this material dring the lesson would provide an effective approach.
The student would also benefit from being able to access written instructions and to
receive visual prompts during the simulation. For example, given to same scenario as

te TK learner above, written descriptions of how to use the cyclic and rotor oot pedals
would be displayed on screen, followed by a description of the introductory lesson. As
soon as the simulation began, visual prompting would 1e administered to correct the
student. A picture of a red left rotor pedal popping up in the lower left corner, signifying
that the trainee should push it, would be an example of a visul prompt.

Auditory learners arc likened to having a tape recorder inside their head. They are
usually able to renmember conve,,rsation well, and learn the best from lectures, and other
auditory stimuli. The best way for this student to lear is by listening to pre-recorded
information, and responding to it in a verbal manner. An adaptive sinrulator for an
auditory learner would give the student audio instructions with visual aids. It would also
allow the student to use voice recognition software to "talk back" to the simulator via
microphone in order to replay old information or obtain more detailed information on a
given subject. Given thle same example as the 'K and visual learners, a student would be
given verbal directions as if there were an instructor in the co-pilot's scat. As the student
piloted the helicopter, the simulator would give the student advice like "Apply a little
more pressure to the left rotor pedal" followed by "That's a little too much" if they
pushed on it too hard, The student would als be ale to query the simulator wth vera
commands like "R'peat instrumtions" or "Rotor pedal descrition."

As long as students can be addressed primarily in their preerred perceptua! learning style.
you can combine aspects of each style to efibetivel give the student a wider range of
options and more complete training. For instance, a TK ltearnr may find auditory
feedback like "Move the cyclic to the left" useul, while an auditoty learner might like to
look at diagrams or prsentations once in a wvhile, or a visual leaner be able to use vice
recognition commands to view written material. The idea of developing a model of the
student's perceptual preference is to give the simulator an idea of how to start the
training. Perceptual preferences will not be used to limit the student, and al options that
are available to the othfer preferences can be accessd and changed through a readily
accessible user menu.

4.4 Environmental Stimuli

The only environmental stimuli that can currently be addressed in a flight simulator.
without making extensive changes to current hardware is sound. While it is true that all
of the environmental stimuli could be addressed (Temperature, Light level, Design, and
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Sound), it is impractical, expensive, and sometimes counterproductive to have
thermostats, dimmer swithes, and reclining seats built into military training simulators.
Therefore they will not be covered in this paper. The only envirounenma stimuli Owat can
be addressed without significantly altering the purpose and cost of training is sound.

SonTd. Most flight simulators address sound in one of two ways, there is either an
absence of sound during instruction, or there is a mixture of background music and/or
sound effects. However, this approach Tails to address the individual sound preferences
of each student. Sorne students prefer to learn with sound, while others do not. Sehmeck
and lockhart (1983) suggest that inherited differences in nervous system functioning
require that extroverted individuals learn in a sthmdating environment, , hile introvertd
persons prefer a quiet, calm environent with few distractions. In addition, Pizo (1981)
found that when sixth grade students were matched with their preferred acoustic
environments and the presence or absence of sound, these stmdeitts sctred sigOnificany
higher in reading achievement amd evidenced more positive attitudes toward school than
students who were mismatched on this element. A simlator lnthat addresses sound would
strt training according to each student's preferred audio environment and also provide
the student with the choice to toggle sound effects and background music on or off in
addition to volume cointrol.

5. OpenSkies Virtual Environment Training System

The OpenSkies Training system provides an interactive development system to train both
students and instructors in a Virtual Reality Environment. Many simulators h:ave the
capability to familiarize the student with sinulations of the actual ins'Irents a:d a few
have the capability to create scripts for mission play. OpenSkies is the only one to have so
closely integrated the analysis and performance measurement capabilities directly within
the simulation software.

5.1 Why is it needed?

OpenSkies is based on the traini.g methodologies developed in Naval Roesearch Labs for
actual Navy training. OpenSkics was created with the following key ideas behind it.

"* To improve the student's performance beyond current training
program capablities.

"* To provide a measurable performance standard.

"* To provide the fvst, simple creation of new training courses.

"- To provide a low cost solution to tainfing on complex, expensive
equipment.

5.2 1tow will this system improve the student's petformance?

This system will draw better performance out of the student by:
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*Providing for a more quantitative approach to performance
measurement.

* Providing a more structured environment in which instructors may
teach.

9 Showing students exactly where their deficiencies exist and
allowing them to concentrite on those items.

# Ensoring that the student meets a specific level of overall
perornmance or performance in pi ticular areas.

5.3 What are the advantages of this system?

"* Low Cost.- requires only sub-$1000 PC.
* Networked multi-partieipant cpabilities for team training.

", Applies event-based training methodologies to a virtual
env•,ironment.

" Allows for recording amd playback of the entire training mission
for later analysis.

* Provides automatic performance analysis feedback to the student.

5.4 What is unique about this system?

"* Applies a quantitative approach that allows for a better comparisot
of performance.

"* Instructors may 'ride' along for realtime instructor analysis.

"* Provides for tracking of class level of performance as well as
instructor level of teaching.

* Provides for the development of training scenxos in hours oather
ihan days or wecks,

", This system may be customized to any domain for faster scenario
development.

5.5 The OpenSkies Scenario Development and Performance Measurement

The OpenxSkies interface contains tools for easily creating new scenarios and directly
testing the student on the training exercises. The stnden's exercise is completely recorded
for later analysis by the instructor as well aS asutomatically analyzed to determine which
objectives the student has or has not met in each exercise. This interface includes:

* point and click programmable scenario

* dialog boxes to test the studet during the sccrt7:io

* initial conditions of the actual scenario
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, the capability to track all of the student's responses, or lack thereof, to any
event

* collection and playback capability for any exercise

* instructor analysis of student performance

* automated performance analysis

* Additionally, the system contains a complete application-programinieg
interface for adding complex and new event types.

Employing these iiteriee, OpenSkies is able to produce a virtwal environment traini-ng
system that provides realistic training and a complete pe:formance analysis package for
training both stuients and instructors,

5.6 Scenario Development

This capability provides the instructor with a simple interface fbr quickly developing new
courses.

Scenario Purpose and Objectives

This interf-ace aflows the instructor to define the scenario objectives for the
student through a point and click dialog box. These objectives are entered into the
objective database by the instructor and are generally defined for the specific type
of training.

Object Initialization

This interface provides a dialog box to set any initial conditions of the students
vehicie/avatar interface. Examples include limited amounts 0f fueib r veh•icles or
an unfamiliar tool set for thie avatar.

Scenario Events

This dialog box allows the instructor to select particular events to solicit responses
from the student. This can be interactions with other objcCts, test questions, etc.
This interface can be configured to be domain specific. For example, a tfligh
training domain would set 'ip pre-light, takeoff, en route, etc. sections f1r
developmnlw and focus on eonununicefions, navigation and situational awareness
skills fir training the student,

Briefing/ Debriefing

This interface provides the instructor with the capability to brief'debricf the
student. This consists of a text and MIME interface for providing information.
The MIME interatce allows the instructor to attach any type of document to the
briefing including such items as video, audio, word documents, HTML documents
or any other information accessible on the compuwter system,
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Environment

This interfhce allows the instructor to change the weather and other environmental
conditions of the scenario.

5.7 P&rformance Analysis

This caiability is provided by several pieces, recording and playback, marking of events
arN!d missýion evaluation and mission swnmary.

Recording and Playback

The studeurs mission is automatically recorded for later playback and analysis.
This includes all interactions with the system, such as te simuliation cnimnt,
popup questions and responses.

Marking of Events

The instructor may mark events in the system while monitoring it in rearlinme, or
playback for later analysis of particular events.

Mission Evaluation

This interface uses the recording and playback capabilities of the system. it allows
the instructor to playback the studen's scenario. The instructor may jump ahead
to particular events and play them, as well as rate the studentes perfbmance for
any particular event or objective.

Mission Summary

This summary effectively scores the student on his/her performance. The system
logs all events and objectives that the student did or not make and gives the
student points for successful objectives.
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Figure 16: Scenario Edit Window

S•8 E~xample Scenuario ) evekopment

We present here a simple example scenario development for a pilot doing a pre-flight
checkout. Assuming we have already developed the domain specific objectives and skill
sets, the instructor can quickly develop a new scemario. The instructor starts by entering
any data about the aircraft type and initial state, such( as the amount of fuel it has. The
instructor enters the main section of the scenario development, the Scenario Events
interface, where he/she is able to create the actual script content.

The instructor develops the script content in the window shown in Figute 19 via the
lollowing steps:
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i) The instructor starts by selecting tle initial 'Phase of the Mission' for the course.
For this particular domain, this would be 'Pre-fight.

2) The instructor selects the skill set that the student will be trained on. The
instructor may select from such items as 'Instrument Checkout', 'Request
Clearance', or 'Taxi to Runway'. Assuming the iustructor selects 'Request
Clearance', the interface provides a list of events available for these criteria for
addition to the scenario.

3) The event choices will now he limited to a few items such as 'Tower
Communication), or 'Radio Traffic', or 'Change Frequency', representing the
events that may occur at this point in the scenario. For this example, the histructor
selects 'Tower Communication' and adds it to the scenario. The interface presents
tihe istr�uctor with a list of sub-tasks that will occur.

1. The student initiates a call to the tower requesting clearmace.

2, The tower acknowledges the call from the student atd requests standby.

3. The tower provides clearance to the student,

4. The student acknowledges the clearance to the lower.

5. The instructor selects each of these sub-asks and defines the specific inputs
and outputs of these subtasks, The following dialog defines inputs for the
clearance firom the tower event.

SThese include:

* the objective,

........ * he radio station of the
student,

n * time offset from the
.beginning of the cenario

N ýor from another event,

the maximum score that
0ite itudent may achve

for this cvent,

* tlie recording of theS~audio fr'om the exter nal

1, Na i EO&O, P oA~o•eh Proteed die source such as the control
I L In I o o po led l, t ctower,

* a description of the
actual ressage,

Figure 17: lnstrilkction fir Student by Time
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5) Once the instructor has finished entering the events and their inputs, the scenario

is saved.

6) The instructor may then test the scenario by executing the application.
This system allows the instructor to quickly develop the course based on specific skills

for each particular domain. Further, by defining the domain prior to flte course
development, the instructor can easily understand and develop the course in a ,amiliar

manner.

5.9 Running the Example Scenario

The interface for executing any scenario is simple and straightforward.

1) The student logs in and loads up the particular scenario.

2) The student is then presented with the briefing for the scenario nd sta-ts the exer1Cse
in the aircraft with the initial conditions set by the instructor, This may inciude the
flight path of the scenario if the instructor wishes,

3) The student then executes the scenario and responds to events such as popup dialogs
for situational awareness, radio calls from the tower and any other events

_.......... .......... _program m ed by the
, instructor. The system

~ records the entire scenario,
watdhing for responses to ali
events.

4) Once the stuident has
completed the scenario,
hetshe is presented with the
summary analysis of hisher
performance, This provides
the student with a rating and
analysIs o which objectives
werenmet

5) The student may he-n go

Figure IS: Control Panel Iack and tr ite scenario
again to correct any errovs
that occurred in the first run.
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This interfcee is tal automatic, rmuning tle student through the scenario without the
student needing any training on the software prior to executing thwe secarlo. Tihis
provides a simple interface that a student may use at any time. Also, sýice the system runs
on des.top PCs, the student may actually practice at homne on a desktop PC.

r c~ ýIt d d~ i T

igure 19: Evaltion Results

The instructor may either 'ride along' with the student at the time of running the scenario,
or analyze the student's performance later. The instructor rides along by sitting a aother
station that is coimected via a network to the student's station. This networked machine
may be anywhere that it is possible to connect via the network. So an instructor may
actually be across the country while monitoring a student. The instructor may then
critique the student's performr ce, or even take the controls from the student in order to
demonstrate the maneuver that he/she wishes the studenI to perform.

Once the student has peribrmed the exercise, the instructor may antlye the student's
performance. The instructor cart look at the stmmary analysis page and decide if ther re
any particular pieces to investigate. The instructor can use the Mission Evaluation screen
to playback the entire scenario, or move to any particular piece and playback tat part of
the scenario specifically. This playback includes all controls by the student, including any
popups and radio calls, as well as all of the student's responses.

41



Fifa[ Report 4 331
Coilraet No, DASW0 t,0O.M•4O55
Cytxerm~t Systems torior;thoa

In. addition, the instructor may have entered events fr the student to respond to in the

AJI Loclm

5 A o~c~. o hn lt Nrth ..
N{ oilh Wh t ý- •.d N.• E,

7.CE312 0,- • mk -•y2.

Fgigure 20: Mission Evaluation

scenario. These would be accessed on playback and may allow for such thirngs as the
instructor to rate the performance of a particular maneuver, Once the instructor has
finished evaluating the student's perfbrmance, the summary analysis can be printed out
and the students' performances can be rated,

In this manner, the instructor's grading habits may also be mionitored, since any student's
performance is then comparable to any other student perforning the same scenario. Also,
instructors may be trained by having actual instructors run the scenarios and purposely
make or not make mistakes for the student instructors to grade.

5.10 Addressing StdeiidIt Errors

Once OpenSkies has been informed of an error, the system is able to present the student
with an appropriate branch in the training scenario. This objective defines the adaptive
capability of the training system. We have developed an adaptive branching capability at
this phase to present the student with different options depending on the level of
capability of the student, These include such options as:

A specifically defined branch created by the instructor.
The system may return the student to the section of the scenario beforu the error

was made and have the student try the process again.
The system may ask if the student requires instruction at this point in the. scenario
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"The student may ask patikular questions about the scenario at this point. This
capability is a larger task than expected and will be developed in the Phase I1
effort.

The system may point out to the student that he/she missed an earlier requirenment
for the procedure.

Spccifically, we have created the following basic events that an instructor may set
up to occur in any particular scenario. These events can track interactions with the
vehicle panel, the control of the vehicle, the vehicle location and particutar times
in the scenario. This interface works as a simple scripting interface where events
are triggered or tied to one another in sequence.

For events that allow the instructor to create branches in the scenario the

following events are used:

Event Activation - Activate a particular event or set of events.

Event Deactivation - Deactivate a particular event or set of events.

Key Input Activate a particular event or set of events

via the keybmrd.

For marking events that are not directly tracking, such as the student examining

weather maps and briefing materials, the following ,venl are commonly used:

Student Action by Time - Track a student's action at a particular time.

Student Action by Location - Track a student's action at a particular

location,

Student Action - Independent- Track the stuIdent's action after a

particular event,

For events that create conmmunication for th, student to hear and reply:

Conmtinunication by Location Provides a radio communication to

the student once the student has entered the specified area.

Communication by Time Provides a radio coninunicaion t the

studenl at a particular time,

Communication to Student - Radio message dependent upon another
event.

Play ATIS Message - Play weather and AUlS info.
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Radio Call From Another Aircraft - Corufication from another AM
amrcraf in the scenario.

For events which look for student communicatios:

Studevt Message by Location Student is expected to reply at a
particular location.

Student Message by Time -~ Student is expected to reply at a particular
time.

For events dealing with the aircraft interface:

Query Vehicle Quet parameters of the vehicle

Command Vehicle - Set parameters of the vehicle,

For events providing info to the student/instructor or asking questions of the
student/instructor:

Popup FYI by Location - Popup a dialog with info upon reaching a

specified location.

Popup FYI by Time Popup a dialog with info at a specified time,

Popup Multiple Choice by Location - Popup a multiple choice question

dialog upon reaching a specified location.

Popup Multiple Choice by Time- Popup a multiple choice question dialog at a
specifid Time.

Popup Q&A by Location Popup a question and answer dialog upon

reaching a specified location.

Popup Q 1WA by Time Popup a question and answer dialog
at a specified time.

"For Misc. events:

ys tvein Command by Time - Toggle between cockpit and outside views,
as well as end the scenario(

Btlilding Macros

Sequences of events that get used over and over are called macros. These macros
are created by building a script from the basic events and then saving this script
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out to a macro file via the Export New Event button. This allows the instructor to
cut and paste and quickly build scenarios from preivious work done.

All of the predefined Event Templates are macros that are just stored in a
particular hierarchy. Once an instructor has created a new macro that they wish to
add, they may simply select any existing Event Template and browse to the
diretory where the macro was stored. The system will then prompt the scenario
designer to fill in the appropriate information as shown in Figure 2.
Event Activation

Figure 21: Evemit Activation WAindow

Time Offset:

This defines the amount of time from the beginning of the: scenario or
another event that this event will be triiggered.

Select= Event...: The instructor may choose a particular event to which to
attach this event,
Max. Score:

This sets the score that the student wvill be given if he/she successfu~lly
handles this event.
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Description:
This provides the description that is shown in the Scenario script area and

in the Mission Evaluation.

Fents to activate:

This specifies which events will be activated when this event is activated,
The user selects from the list of events via the normal wndows selection, i.e,
single click, select and drag or select and ctrl select.

Event Deactivation

Figure 22: E!'vent Deactivation Window

Time Offset:

This defines the amount of dime fi-on the beginning of the scenario or
another event that this event will be triggered.

Select Event...: The instructor may choose a particular event to which ,to
attach this event.

MIax. Score:

This sets the score that the student will be given if he/she successfully
handles this event.
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Description:

This provides the description that is shown in the Scenario script area and
in the Mission Evaluation.

Events to deactivate:

This specifies which events will be activated when this event is activated.
The user selects firom the list of events via the normal windows sclecion, ie.
single cick, select and drag or select and ctri select.

5.11 Example of Branching using Activaftion and Deactivation

A basic capability of the scenario system is that it allows scenarios to change
behavior depending upon what the student does. One tool that is required for this
is the ability to choose between two or more event chains depending on some
condition. We call this capability branching.

Branching is shown in the Scenario script area in the Edit Scenario box via
indentations and the b#> labels where # is tbe number of the branch.

Event activation and event deactivation provide branching capability by giving the
designer the ability to "turn off' pending event elements or to cause an event to
occur immediately. The following is an example of the use of the activate and
deactivate script elements,

1) FYI Popup by Time - This script element causes a popup to occur. It triggers
effects when the student clicks the OK button on the popup.

A) Student Message by Time (Tvn1out,10) •Triggers effects when the
Student makes a radio call. After 10 seconds, this event will time-out.

01) Communication By Time (TimeoutW10) This script element causes
reply #l1 radio message to happen.

(a) Event Deactivation(I.B) Deactivates tie "no s Iudent
radio call" branch,.

(One) FYI Popup by Time this is the last script elemen to occur
in this mini-scenerio.

1) Communication By Time 1Time= 1) - This script elemenmt causes reply 02
radio message to happen.
01) Event Activation (1.A.01.a.One) - Activates the final script
element.

This mini-scenario will first bring up a FYI (for your information) popup. ft will
then wait for the student to make a radio call. If the student makes the radio call
within 10 seconds, reply number I will occur followcd by the final FYi popup. In
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this casIce B3ranh 1.11 will be deactivated by script line 1.A.01.a. If the student
fails to make the radio call within 10 seconds, the event will deactivate itslf. In
this case scrip 1I. will 11t be deactivated within Ie I-second time offset, so k(
will occur, and will cause i.BR02 to occur immediately thereafer tgaering the
final script element 1.A.01.a.One.

The end effect of all this is fltat flte scenario will respond to the student one way if
the student remembers to make a radio call, and respond in another way if tle
student lorýcts. In Ither case the last event is the FYI popup.

I L0

Figure 23: Key input Window

Key Input

This event allows the iastuctolr or student to activate a particular event or
set of events in the scenario as shown in F4gure 4.

Objective:

This allows the instructor to tie a particular objective to the event, such as
a commnuications objective.

Time Offset:

This defines the amount of time from the beginning of the scenario or
another event that this event will be tggered.
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Select Event.,.: The instructor may choose a particular event to which to
attach this eventi

This efines Hie keyboard key to be used. Currently there ar only 9 keys
avaible.
Source:

This defines whether a studerit, the instructor, or both may activate the
new evenits,,

Time Out:

This defines the time period in which this event is active.

Max. Score:

This sets the s:ere that the student will be given if he/she successfully hand Ic this
cvent.

6. Future Directions

The proposed technology will be leveraged into Cybemet's OpenSkies Massive
Multiplayer training and gaming simulation business. Cybernet has developed a
massively multi-player simulation technology for air, sea and land game and simulation
play'), While this technology was originally developed 'or low cost government
simulation for training, the Company plans to adapt the tmchnology to revoltionz the
consumer network gaming and flight simulator industry. The Company plans to distrbute
its O!enSkies simulation products at retail into the market, which is currently defined by
Microsoft Flight Simlator, ProPilot, and Flight UntEimited To makes a ignificant inroad
to this market, Cybernet plans to sell the product not as an end to itself, but as the entry
point to a new game playing experience.

Cybermet plans to revolutionize the gaming industay by coupling the experience of'
leading military commanders with the on-line flight gaming experience. The military
commander will structure a training process which 'recruits' pnayers, gives them flight
trainiuig modeled after current military doctrine, and then leads graduates in a muiti~payer

interactive war game. Because the technology is compatible with Government trainrg
needs Cybernet plans to sell this product into the Government space for integration and
t~raining purposes a•s well.

Ohe CuTrrent financial model fbr this new gaining experience indicates that it can be
operated profitably in the 2 d year y of operations.

The current gaming community consists of more thian 7 million online garners and is a
$6 billion dollar per year industry (according to Forrester Research)y In addition, an on-

l he comptete business plhn is availafe upon request,
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line gaming market size of $1,2 Billion will be readied by 2000 (according to Jupiter
Communications).

{ :'<,: ,{

g,20 m0•0

Figure 24: Summary• of Sales for Leading Flight Simulatom and Ondine Games

7. Marketing Plan

t. Create and offer a new ondine gamk•g experie, nee.

2. Foct)s initially on •he flight simulation market.

3. Raise financing to support marke!ing and ittitial :network service rote-out,

4. Start promotion R)r 6 months tiirough a beta program to ensure the quality of
the game experience to 250-500 players and •hen promote morn widely m
teverage good p{ayer experiences ti'om the beta period to a wider audience.

5. Participate in game eoniCerenees anti t:rade shows.

6. Advertise in flight sinmlation journals.

7, Release the first version of flte game and group play e:xpmqence within one

year.

7.I Target Market

tr•iially Ibis MIt eo•sist of fl•e Night simulation mm'keL These users m-e the most [ikdy
to pay higher prices as most •ff lhese customers Spend $200 - $300 a year on flighI
simulation gaming. We expect this to expand into the wider 3D on-line gami•g market.
These users Vpicalty pay a $10.00 !mon•h fee i•)r access to network game services. The
pricing model (nominally $49 for the OpenSkks install CD and up to $29 per month in
network related revenue) wiIl provide •br m• initial h•gh sMes market with ¢on•:/nued
revenue llu•ough tile online games. This market can [ra expmtded with more onli,•e games
and more neiwork servem to support a larger online commmity.
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7.2 Product

This product will consist of software on a CD fbr Windows 95, 98, and NT attractively
boxed fr consumer impulse purchase. The CD will automatically install the software on
the user's PC and will require that they create an on-ine web account with Cybemet for
the mos, pleasurable gaming experience.

7.3 Silies

Sales are targeted to be 100,000 units within the first 3 months of release, with sales
ranging up to 2,000,000 over the lifetime of the game. Planned retention of on-line
customers after the first free month of play is 30% or better. The initiMl beta period tested
with 250-500 users will validate these expectations or fbrce re-evaluation of the sales
plan.

7.4 Budget
OpenSkies as a technology had $5 million invested into it a a teclmology platform

and approximately $3 Sm.iflon as a specfic truining/ganing sysIem it is our expectation
that approximately $2 million in additional developmeint and marketing expenses will e
required to move into large-scale revenue growth £br this property,

8. Conclusions

This Phase I project has Iaid the foundation for significant advances in thes of adaptive
instruction for the virtual training of helicopter pilots. The developed tcchologv is
essential to enhance ftle cMrent state of training. The proof-of-concept Phase t sysm
demonstrates thwe feasibility of this system. Future developmens of the Phase I
technology will ficilitate its intgration into OpenSkies to provide a full virtual training
suite,
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